Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 512
Filtrar
1.
Microb Pathog ; 190: 106642, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599551

RESUMO

The intestinal and respiratory tracts of healthy individuals serve as habitats for a diverse array of microorganisms, among which Klebsiella oxytoca holds significance as a causative agent in numerous community- and hospital-acquired infections, often manifesting in polymicrobial contexts. In specific circumstances, K. oxytoca, alongside other constituents of the gut microbiota, undergoes translocation to distinct physiological niches. In these new environments, it engages in close interactions with other microbial community members. As this interaction may progress to co-infection where the virulence of involved pathogens may be promoted and enhance disease severity, we investigated how K. oxytoca affects the adhesion of commonly co-isolated bacteria and vice versa during co-incubation of different biotic and abiotic surfaces. Co-incubation was beneficial for the adhesion of at least one of the two co-cultured strains. K. oxytoca enhanced the adhesion of other enterobacteria strains to polystyrene and adhered more efficiently to bladder or lung epithelial cell lines in the presence of most enterobacteria strains and S. aureus. This effect was accompanied by bacterial coaggregation mediated by carbohydrate-protein interactions occurring between bacteria. These interactions occur only in sessile, but not planktonic populations, and depend on the features of the surface. The data are of particular importance for the risk assessment of the urinary and respiratory tract infections caused by K. oxytoca, including those device-associated. In this paper, we present the first report on K. oxytoca ability to acquire increased adhesive capacities on epithelial cells through interactions with common causal agents of urinary and respiratory tract infections.


Assuntos
Aderência Bacteriana , Células Epiteliais , Infecções por Klebsiella , Klebsiella oxytoca , Pulmão , Bexiga Urinária , Klebsiella oxytoca/fisiologia , Humanos , Células Epiteliais/microbiologia , Pulmão/microbiologia , Infecções por Klebsiella/microbiologia , Bexiga Urinária/microbiologia , Staphylococcus aureus/fisiologia , Staphylococcus aureus/patogenicidade , Técnicas de Cocultura , Coinfecção/microbiologia , Linhagem Celular , Interações Microbianas , Infecções Oportunistas/microbiologia , Infecções Respiratórias/microbiologia , Virulência
2.
Folia Microbiol (Praha) ; 69(1): 41-57, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37672163

RESUMO

The asymmetrical distribution of the cellular organelles inside the cell is maintained by a group of cell polarity proteins. The maintenance of polarity is one of the vital host defense mechanisms against pathogens, and the loss of it contributes to infection facilitation and cancer progression. Studies have suggested that infection of viruses and bacteria alters cell polarity. Helicobacter pylori and Epstein-Barr virus are group I carcinogens involved in the progression of multiple clinical conditions besides gastric cancer (GC) and Burkitt's lymphoma, respectively. Moreover, the coinfection of both these pathogens contributes to a highly aggressive form of GC. H. pylori and EBV target the host cell polarity complexes for their pathogenesis. H. pylori-associated proteins like CagA, VacA OipA, and urease were shown to imbalance the cellular homeostasis by altering the cell polarity. Similarly, EBV-associated genes LMP1, LMP2A, LMP2B, EBNA3C, and EBNA1 also contribute to altered cell asymmetry. This review summarized all the possible mechanisms involved in cell polarity deformation in H. pylori and EBV-infected epithelial cells. We have also discussed deregulated molecular pathways like NF-κB, TGF-ß/SMAD, and ß-catenin in H. pylori, EBV, and their coinfection that further modulate PAR, SCRIB, or CRB polarity complexes in epithelial cells.


Assuntos
Coinfecção , Infecções por Vírus Epstein-Barr , Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Infecções por Vírus Epstein-Barr/microbiologia , Infecções por Vírus Epstein-Barr/patologia , Herpesvirus Humano 4/genética , Helicobacter pylori/genética , Coinfecção/microbiologia , Polaridade Celular , Neoplasias Gástricas/genética , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia , Proteínas Virais , Infecções por Helicobacter/microbiologia
3.
Vet Microbiol ; 288: 109954, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38104440

RESUMO

Clinically, Porcine circovirus type 2 (PCV2) often causes disease through coinfection with other bacterial pathogens, including Glaesserella parasuis (G. parasuis), which causes high morbidity and mortality. However, the mechanism of PCV2 and G. parasuis serotype 4 (GPS4) co-infection is still not fully understood. In this study, swine tracheal epithelial cells (STEC) were used as a barrier model, and our results showed that PCV2 infection increased the adhesion of GPS4 to STEC, while decreasing the levels of ZO-1, Occludin and increasing tracheal epithelial permeability, and ultimately facilitated GPS4 translocation. Snail1 is a transcriptional repressor, and has been known to induce epithelial-to-mesenchymal transition (EMT) during development or in cancer metastasis. Importantly, we found that Snail1, as a transcriptional repressor, was crucial in destroying the tracheal epithelial barrier induced by PCV2, GPS4, PCV2 and GPS4 coinfection. For the first time, we found that PCV2, GPS4, PCV2 and GPS4 coinfection cross-activates TGF-ß and p38/MAPK signaling pathways to upregulate the expression of Snail1, down-regulate the levels of ZO-1 and Occludin, and thus disrupt the integrity of tracheal epithelial barrier then promoting GPS4 translocation. Finally, PCV2 and GPS4 co-infection also can activate TGF-ß and p38/MAPK signaling pathways in vivo and upregulate Snail1, ultimately down-regulating the expression of ZO-1 and Occludin. Our study elucidates how PCV2 infection promotes GPS4 to breach the tracheal epithelial barrier and aggravate clinical manifestations.


Assuntos
Infecções por Circoviridae , Circovirus , Coinfecção , Doenças dos Suínos , Suínos , Animais , Circovirus/fisiologia , Coinfecção/microbiologia , Coinfecção/veterinária , Ocludina , Sorogrupo , Junções Intercelulares/patologia , Fator de Crescimento Transformador beta , Epitélio/patologia , Infecções por Circoviridae/veterinária
4.
Eur J Clin Microbiol Infect Dis ; 42(9): 1091-1101, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37468662

RESUMO

The aim of this study was to investigate the value of syndromic diagnostic testing for a better understanding of the epidemiology of gastrointestinal infections in Denmark. Here we evaluated the QIAstat-Dx® Gastrointestinal (GI) Panel 1 assay on 18,610 fecal samples requested for analysis for enteric pathogens in Region Zealand, Denmark, in 1 year (October 1, 2021, to September 30, 2022). In total, 6905 (37%) samples were detected positive for one or more diarrhoeal bacteria, viruses, and protozoa. The most common bacterial, viral, and parasitic pathogens detected with the QIAstat-Dx® Gastrointestinal Panel 1 were EPEC (in patients ≥ 2 years of age) (n = 1420 (20.6%)), rotavirus (n = 948 (13.7%)), and Cryptosporidium spp. (n = 196 (2.84%)). We identified a large diversity in infections likely reflecting substantial differences in the epidemiology including origin of infections, mode of transmission, seasonality, age-dependent susceptibility to disease, severity, and travel history. All pathogens were detected as both single and coinfections. Viral infections peaked in March with a positive rate of 31.6%, and bacterial infections peaked in August with a positive rate of 35.3%. ETEC, Shigella/EIEC, EAEC, and P. shigelloides were most related to travel activity, and coinfections were frequent. The distribution of Ct values varied significantly between the pathogens, with the lowest Ct values (median 17-18) observed in astrovirus, adenovirus, and rotavirus. Our results highlight the value of providing extensive diagnostic testing on fecal samples for sufficient detection of relevant diarrhoeal pathogens for optimal clinical care.


Assuntos
Bacteriófagos , Coinfecção , Doenças Transmissíveis , Criptosporidiose , Cryptosporidium , Gastroenteropatias , Rotavirus , Humanos , Coinfecção/microbiologia , Criptosporidiose/diagnóstico , Criptosporidiose/epidemiologia , Diarreia/microbiologia , Fezes/microbiologia , Dinamarca/epidemiologia
5.
Microbiol Spectr ; 11(4): e0524722, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37318361

RESUMO

Influenza A virus (IAV)-methicillin-resistant Staphylococcus aureus (MRSA) coinfection causes severe respiratory infections. The host microbiome plays an important role in respiratory tract infections. However, the relationships among the immune responses, metabolic characteristics, and respiratory microbial characteristics of IAV-MRSA coinfection have not been fully studied. We used specific-pathogen-free (SPF) C57BL/6N mice infected with IAV and MRSA to build a nonlethal model of IAV-MRSA coinfection and characterized the upper respiratory tract (URT) and lower respiratory tract (LRT) microbiomes at 4 and 13 days postinfection by full-length 16S rRNA gene sequencing. Immune response and plasma metabolism profile analyses were performed at 4 days postinfection by flow cytometry and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The relationships among the LRT microbiota, the immune response, and the plasma metabolism profile were analyzed by Spearman's correlation analysis. IAV-MRSA coinfection showed significant weight loss and lung injury and significantly increased loads of IAV and MRSA in bronchoalveolar lavage fluid (BALF). Microbiome data showed that coinfection significantly increased the relative abundances of Enterococcus faecalis, Enterobacter hormaechei, Citrobacter freundii, and Klebsiella pneumoniae and decreased the relative abundances of Lactobacillus reuteri and Lactobacillus murinus. The percentages of CD4+/CD8+ T cells and B cells in the spleen; the levels of interleukin-9 (IL-9), interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), IL-6, and IL-8 in the lung; and the level of mevalonolactone in plasma were increased in IAV-MRSA-coinfected mice. L. murinus was positively correlated with lung macrophages and natural killer (NK) cells, negatively correlated with spleen B cells and CD4+/CD8+ T cells, and correlated with multiple plasma metabolites. Future research is needed to clarify whether L. murinus mediates or alters the severity of IAV-MRSA coinfection. IMPORTANCE The respiratory microbiome plays an important role in respiratory tract infections. In this study, we characterized the URT and LRT microbiota, the host immune response, and plasma metabolic profiles during IAV-MRSA coinfection and evaluated their correlations. We observed that IAV-MRSA coinfection induced severe lung injury and dysregulated host immunity and plasma metabolic profiles, as evidenced by the aggravation of lung pathological damage, the reduction of innate immune cells, the strong adaptation of the immune response, and the upregulation of mevalonolactone in plasma. L. murinus was strongly correlated with immune cells and plasma metabolites. Our findings contribute to a better understanding of the role of the host microbiome in respiratory tract infections and identified a key bacterial species, L. murinus, that may provide important references for the development of probiotic therapies.


Assuntos
Coinfecção , Vírus da Influenza A , Lesão Pulmonar , Staphylococcus aureus Resistente à Meticilina , Microbiota , Infecções Respiratórias , Camundongos , Animais , Coinfecção/microbiologia , Lesão Pulmonar/patologia , Linfócitos T CD8-Positivos , Cromatografia Líquida , RNA Ribossômico 16S , Camundongos Endogâmicos C57BL , Espectrometria de Massas em Tandem , Pulmão/patologia , Imunidade
6.
J Med Microbiol ; 72(6)2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37289488

RESUMO

Introduction. One third of people with CF in the UK are co-infected by both Staphylococcus aureus and Pseudomonas aeruginosa. Chronic bacterial infection in CF contributes to the gradual destruction of lung tissue, and eventually respiratory failure in this group.Gap Statement. The contribution of S. aureus to cystic fibrosis (CF) lung decline in the presence or absence of P. aeruginosa is unclear. Defining the molecular and phenotypic characteristics of a range of S. aureus clinical isolates will help further understand its pathogenic capabilities.Aim. Our objective was to use molecular and phenotypic tools to characterise twenty-five clinical S. aureus isolates collected from mono- and coinfection with P. aeruginosa from people with CF at the Royal Victoria Infirmary, Newcastle upon Tyne.Methodology. Genomic DNA was extracted and sequenced. Multilocus sequence typing was used to construct phylogeny from the seven housekeeping genes. A pangenome was calculated using Roary, and cluster of Orthologous groups were assigned using eggNOG-mapper which were used to determine differences within core, accessory, and unique genomes. Characterisation of sequence type, clonal complex, agr and spa types was carried out using PubMLST, eBURST, AgrVATE and spaTyper, respectively. Antibiotic resistance was determined using Kirby-Bauer disc diffusion tests. Phenotypic testing of haemolysis was carried out using ovine red blood cell agar plates and mucoid phenotypes visualised using Congo red agar.Results. Clinical strains clustered closely based on agr type, sequence type and clonal complex. COG analysis revealed statistically significant enrichment of COG families between core, accessory and unique pangenome groups. The unique genome was significantly enriched for replication, recombination and repair, and defence mechanisms. The presence of known virulence genes and toxins were high within this group, and unique genes were identified in 11 strains. Strains which were isolated from the same patient all surpassed average nucleotide identity thresholds, however, differed in phenotypic traits. Antimicrobial resistance to macrolides was significantly higher in the coinfection group.Conclusion. There is huge variation in genetic and phenotypic capabilities of S. aureus strains. Further studies on how these may differ in relation to other species in the CF lung may give insight into inter-species interactions.


Assuntos
Coinfecção , Fibrose Cística , Infecções Estafilocócicas , Animais , Ovinos , Staphylococcus aureus , Fibrose Cística/complicações , Fibrose Cística/microbiologia , Coinfecção/microbiologia , Ágar , Fenótipo , Infecções Estafilocócicas/microbiologia , Antibacterianos/farmacologia
7.
Cell Rep ; 42(6): 112540, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37227819

RESUMO

Pseudomonas aeruginosa and Staphylococcus aureus are among the most frequently isolated bacterial species from polymicrobial infections of patients with cystic fibrosis and chronic wounds. We apply mass spectrometry guided interaction studies to determine how chemical interaction shapes the fitness and community structure during co-infection of these two pathogens. We demonstrate that S. aureus is equipped with an elegant mechanism to inactivate pyochelin via the yet uncharacterized methyltransferase Spm (staphylococcal pyochelin methyltransferase). Methylation of pyochelin abolishes the siderophore activity of pyochelin and significantly lowers pyochelin-mediated intracellular reactive oxygen species (ROS) production in S. aureus. In a murine wound co-infection model, an S. aureus mutant unable to methylate pyochelin shows significantly lower fitness compared with its parental strain. Thus, Spm-mediated pyochelin methylation is a mechanism to increase S. aureus survival during in vivo competition with P. aeruginosa.


Assuntos
Coinfecção , Infecções Estafilocócicas , Humanos , Camundongos , Animais , Staphylococcus aureus/fisiologia , Pseudomonas aeruginosa/metabolismo , Coinfecção/microbiologia , Infecções Estafilocócicas/microbiologia
8.
PLoS Negl Trop Dis ; 17(4): e0011189, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37036845

RESUMO

The leading infectious cause of death in children worldwide is lower acute respiratory infection (LARI), particularly pneumonia. We enrolled a total of 538 acute respiratory infection (ARI) cases according to WHO criteria and age-sex matched 514 controls in the Forcibly Displaced Myanmar National (FDMN) refugee camps in Cox's Bazar, Bangladesh, between June 2018 and March 2020 to investigate the role of bacteria, viruses, and their co-infection patterns and observe Streptococcus pneumoniae (S. pneumoniae) serotype distribution. According to the etiological findings, children ≤5 years of age have a higher bacterial positivity (90%) and viral positivity (34%) in nasopharyngeal samples (NPS) compared to those >5 years of age, in both ARI cases as well as for the control group. Among the bacteria, S. pneumoniae was predominant in both cases and controls (85% and 88%). Adenovirus (ADV)(34), influenza virus A and B (IFV-A, B)(32,23), and respiratory syncytial virus (RSV)(26) were detected as the highest number among the viruses tested for the ARI cases. The total number of viruses was also found higher in ≤5 years of age group. Within this group, positive correlation was observed between bacteria and viruses but negative correlation was observed between bacteria. Both single and co-infection for viruses were found higher in the case group than the control group. However, co-infection was significantly high for Streptococcus aureus (S. aureus) and Haemophilus influenzae b (H. influenza b) (p<0.05). Additionally, semi-quantitative bacterial and viral load was found higher for the ARI cases over control considering Cycle threshold (Ct)≤30. Pathogen identification from blood specimens was higher by qRT-PCR than blood culture (16% vs 5%, p<0.05). In the S. pneumoniae serotype distribution, the predominant serotypes in ARI cases were 23F, 19A, 16F, 35B, 15A, 20 and 10F, while 11A, 10A, 34, 35A and 13 serotypes were predominant in the control group. Pathogen correlation analysis showed RSV positively correlated with human metapneumovirus (HMPV), S. aureus and H. influenza b while S. pneumoniae was negatively correlated with other pathogens in ≤5 years age group of ARI cases. However, in >5 years age group, S. aureus and H. influenza b were positively correlated with IFVs, and S. pneumoniae was positively correlated with HMPV and ADV. Logistic regression data for viruses suggested among the respondents in cases were about 4 times more likely to be RSV positive than the control. Serotype distribution showed 30% for PCV10 serotypes, 41% for PCV13 and 59% for other serotypes. Also, among the 40 serotypes of S. pneumoniae tested, the serotypes 22F, Sg24, 9V, 38, 8, and 1 showed strong positive correlation with viruses in the case group whereas in the control group, it was predominant for serotypes 14, 38, 17F and 39 ARI cases were prevalent mostly in monsoon, post-monsoon, and winter periods, and peaked in September and October. Overall these region-specific etiological data and findings, particularly for crisis settings representing the FDMNs in Cox's Bazar, Bangladesh, is crucial for disease management and disease prevention control as well as immunization strategies more generally in humanitarian crisis settings.


Assuntos
Coinfecção , Influenza Humana , Infecções Respiratórias , Vírus , Criança , Humanos , Lactente , Pré-Escolar , Coinfecção/microbiologia , Estudos de Casos e Controles , Mianmar/epidemiologia , Staphylococcus aureus , Infecções Respiratórias/epidemiologia , Bactérias/genética , Streptococcus pneumoniae , Streptococcus , Haemophilus influenzae
9.
Lancet Microbe ; 4(5): e330-e339, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37001538

RESUMO

BACKGROUND: Severe community-acquired pneumonia (SCAP) is associated with a substantial number of hospitalisations and deaths worldwide. Infection or co-infection patterns, along with their age dependence and clinical effects are poorly understood. We aimed to explore the causal and epidemiological characteristics by age, to better describe patterns of community-acquired pneumonia (CAP) and their association with severe disease. METHODS: National surveillance of CAP was conducted through a network of hospitals in 30 provinces in China from 2009-20 inclusive. Patients with CAP were included if they had evidence of acute respiratory tract, had evidence of pneumonia by chest radiography, diagnosis of pneumonia within 24 h of hospital admission, and resided in the study catchment area. For the enrolled patients with CAP, nasopharyngeal and oral swabs were taken and tested for eight viral pathogens; and blood, urine, or expectorated sputum was tested for six bacterial pathogens. Clinical outcomes, including SCAP, were investigated with respect to age and patterns of infections or co-infections by performing binary logistic regression and multivariate analysis. FINDINGS: Between January, 2009, and December, 2020, 18 807 patients with CAP (3771 [20·05%] with SCAP) were enrolled. For both children (aged ≤5 years) and older adults (aged >60 years), a higher overall rate of viral and bacterial infections, as well as viral-bacterial co-infections were seen in patients with SCAP than in patients with non-SCAP. For adults (aged 18-60 years), however, only a higher rate of bacterial-bacterial co-infection was observed. The most frequent pathogens associated with SCAP were respiratory syncytial virus (RSV; 21·30%) and Streptococcus pneumoniae (12·61%) among children, and influenza virus (10·94%) and Pseudomonas aeruginosa (15·37%) among older adults. Positive rates of detection of most of the tested pathogens decreased during 2020 compared with the 2009-19 period, except for RSV, P aeruginosa, and Klebsiella pneumoniae. Multivariate analyses showed SCAP was significantly associated with infection with human adenovirus, human rhinovirus, K pneumoniae, or co-infection of RSV and Haemophilus influenzae or RSV and Staphylococcus aureus in children and adolescents (aged <18 years), and significantly associated with infection with P aeruginosa, K pneumoniae, or S pneumoniae, or co-infection with P aeruginosa and K pneumoniae in adults (aged ≥18 years). INTERPRETATION: Both prevalence and infection pattern of respiratory pathogens differed between patients with SCAP and patients with non-SCAP in an age-dependent manner. These findings suggest potential advantages to age-related strategies for vaccine schedules, as well as clinical diagnosis, treatment, and therapy. FUNDING: China Mega-Project on Infectious Disease Prevention and The National Natural Science Funds of China. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Assuntos
Coinfecção , Infecções Comunitárias Adquiridas , Pneumonia , Vírus Sincicial Respiratório Humano , Viroses , Criança , Adolescente , Humanos , Adulto , Idoso , Coinfecção/epidemiologia , Coinfecção/complicações , Coinfecção/microbiologia , Pneumonia/diagnóstico , Pneumonia/epidemiologia , Pneumonia/etiologia , Streptococcus pneumoniae , Viroses/complicações , Klebsiella pneumoniae , Infecções Comunitárias Adquiridas/epidemiologia , Infecções Comunitárias Adquiridas/diagnóstico , Infecções Comunitárias Adquiridas/microbiologia
10.
Microbiology (Reading) ; 169(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36748431

RESUMO

Cystic fibrosis (CF) is a genetic disorder affecting epithelial ion transport, which among other impacts results in defective mucociliary clearance and innate defenses in the respiratory tract. Consequently, people with CF experience lifelong infections of the respiratory mucosa that are chronic and polymicrobial in nature. Young children with CF are initially colonized by opportunists like nontypeable Haemophilus influenzae (NTHi), which normally resides within the microbiome of the nasopharynx and upper airways and can also cause infections of the respiratory mucosa that include bronchitis and otitis media. NTHi is typically supplanted by other microbes as patients age; for example, people with CF are often chronically infected with mucoid strains of Pseudomonas aeruginosa, which prior work in our laboratory has shown to promote colonization and persistence by other opportunists that include Stenotrophomonas maltophilia. Our previous work has shown that polymicrobial infection impacts host colonization and persistence of incoming microbes via diverse mechanisms that include priming of host immunity that can promote microbial clearance, and cooperativity within polymicrobial biofilms, which can promote persistence. In infection studies with BALB/c Cftrtm1UNC mice, results showed, as previously observed for WT BALB/c mice, preceding infection with NTHi decreased colonization and persistence by P. aeruginosa. Likewise, polymicrobial infection of BALB/c Cftrtm1UNC and C57BL/6 Cftrtm1UncTg(FABPhCFTR)1Jaw/J mice showed correlation between S. maltophilia and P. aeruginosa, with increased bacterial colonization and lung pathology. Based on these results, we conclude that our previous observations regarding polymicrobial infections with CF opportunists in WT mice are also validated using CF mice.


Assuntos
Coinfecção , Fibrose Cística , Infecções por Pseudomonas , Camundongos , Animais , Fibrose Cística/microbiologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Coinfecção/microbiologia , Camundongos Endogâmicos C57BL , Sistema Respiratório , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética
12.
Front Cell Infect Microbiol ; 12: 969126, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211959

RESUMO

Rapid and accurate pathogen identification is essential for timely and effective treatment of pneumonia. Here, we describe the use of metagenomic next-generation sequencing (mNGS) of bronchoalveolar lavage (BALF) fluid to identify pathogens in patients with hematologic comorbid respiratory symptoms in a retrospective study with 84 patients. In the transplantation group, 8 cases (19.5%) and 47 cases (97.9%) were positive for BALF by conventional method detection and mNGS detection, respectively, and 6 cases (14.0%) and 41 cases (91.1%) in chemotherapy group, respectively. The detection rate of mNGS in both groups was significantly higher than that of conventional detection methods (all P<0.05). Pseudomonas aeruginosa and Streptococcus pneumoniae were the most common bacterial infections in the transplantation and chemotherapy groups, respectively. Aspergillus was the most common fungal infection in both groups. Human betaherpesvirus 5 (HHV-5), torque teno virus and human betaherpesvirus 7 (HHV-7) were the most common pathogen species in both groups. The most common type of infection in patients in the transplantation and chemotherapy groups was the mixed infection of bacteria-virus. Most patients in the transplantation group had mixed infections based on multiple viruses, with 42 cases of viral infections in the transplantation group and 30 cases of viral infections in the chemotherapy group, which were significantly higher in the transplantation group than in the chemotherapy group (χ2 = 5.766, P=0.016). and the mixed infection of virus-virus in the transplantation group was significantly higher than that in the chemotherapy group (27.1% vs 4.4%, P=0.003). The proportion of death due to pulmonary infection was significantly higher in the transplantation group than in the chemotherapy group (76.9% vs 16.7%, χ2 = 9.077, P=0.003). This study demonstrated the value of mNGS of BALF in improving the diagnosis and prognosis of hematologic comorbid pneumonia, helping patients to obtain timely and effective treatment, and giving guidance on the overall treatment plan for patients, with particular benefit for patients with hematologic chemotherapy comorbid pneumonia.


Assuntos
Coinfecção , Transplante de Células-Tronco Hematopoéticas , Pneumonia , Viroses , Coinfecção/microbiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Metagenômica/métodos , Pneumonia/microbiologia , Estudos Retrospectivos , Sensibilidade e Especificidade
13.
Adv Exp Med Biol ; 1386: 397-424, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36258081

RESUMO

The human pathogens Pseudomonas aeruginosa and Staphylococcus aureus are frequently co-isolated from chronic wounds or cystic fibrosis patient airways. Clinical studies analysing the impact of co-infection on patient clinical outcomes lead to contradictory results. However, laboratory approaches suggest that the two pathogens co-colonize the same infection niches and form a mixed-species biofilm, therefore favouring their resistance to antibiotics and immune response. In parallel, many recent studies have focused on the different interactions between the two bacterial species. It has long been recognized that P. aeruginosa usually outcompetes S. aureus, and the molecular mechanisms involved in this state of bacterial competition are now well understood. However, several recent studies show that interactions between P. aeruginosa and S. aureus can be diverse and evolve over time. Thus, many CF isolates of P. aeruginosa and S. aureus can coexist and develop cooperative behaviours. In this chapter, we will provide an overview of the current knowledge on the mixed populations of P. aeruginosa and S. aureus, from their mechanisms of establishment to their impacts on bacterial physiology and clinical outcomes.


Assuntos
Coinfecção , Infecções Estafilocócicas , Humanos , Staphylococcus aureus/fisiologia , Pseudomonas aeruginosa/fisiologia , Coinfecção/microbiologia , Infecções Estafilocócicas/microbiologia , Biofilmes , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
14.
mBio ; 13(4): e0126722, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35913160

RESUMO

Influenza A virus (IAV) infections are a leading cause of mortality worldwide. Excess mortality during IAV epidemics and pandemics is attributable to secondary bacterial infections, particularly pneumonia caused by Streptococcus pneumoniae. Resident alveolar macrophages (rAMs) are early responders to respiratory infections that coordinate initial host defense responses. Maresin conjugates in tissue regeneration (MCTRs) are recently elucidated cysteinyl maresins that are produced by and act on macrophages. Roles for MCTRs in responses to respiratory infections remain to be determined. Here, IAV infection led to transient decreases in rAM numbers. Repopulated lung macrophages displayed transcriptional alterations 21 days post-IAV with prolonged susceptibility to secondary pneumococcal infection. Administration of a mix of MCTR1 to 3 or MCTR3 alone post-IAV decreased lung inflammation and bacterial load 48 and 72 h after secondary pneumococcal infection. MCTR-exposed rAMs had increased migration and phagocytosis of Streptococcus pneumoniae, reduced secretion of CXCL1, and a reversion toward baseline levels of several IAV-induced pneumonia susceptibility genes. Together, MCTRs counter regulated post-IAV changes in rAMs to promote a rapid return of bacteria host defense. IMPORTANCE Secondary bacterial pneumonia is a serious and common complication of IAV infection, leading to excess morbidity and mortality. New host-directed approaches are needed to complement antibiotics to better address this important global infectious disease. Here, we show that harnessing endogenous resolution mechanisms for inflammation by exogenous administration of a family of specialized proresolving mediators (i.e., cys-MCTRs) increased macrophage resilience mechanisms after IAV to protect against secondary infection from Streptococcus pneumoniae.


Assuntos
Coinfecção , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Infecções Pneumocócicas , Pneumonia Bacteriana , Infecções Respiratórias , Animais , Coinfecção/microbiologia , Humanos , Influenza Humana/complicações , Pulmão/microbiologia , Macrófagos , Masculino , Camundongos , Infecções Pneumocócicas/complicações , Infecções Respiratórias/complicações , Ovinos , Streptococcus pneumoniae
15.
Microbiome ; 10(1): 129, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35982474

RESUMO

BACKGROUND: The increasing prevalence of resistance against the last-resort antibiotic colistin is a significant threat to global public health. Here, we discovered a novel colistin resistance mechanism via enzymatic inactivation of the drug and proposed its clinical importance in microbial communities during polymicrobial infections. RESULTS: A bacterial strain of the Gram-negative opportunistic pathogen Stenotrophomonas maltophilia capable of degrading colistin and exhibiting a high-level colistin resistance was isolated from the soil environment. A colistin-degrading protease (Cdp) was identified in this strain, and its contribution to colistin resistance was demonstrated by growth inhibition experiments using knock-out (Δcdp) and complemented (Δcdp::cdp) mutants. Coculture and coinfection experiments revealed that S. maltophilia carrying the cdp gene could inactivate colistin and protect otherwise susceptible Pseudomonas aeruginosa, which may seriously affect the clinical efficacy of the drug for the treatment of cystic fibrosis patients with polymicrobial infection. CONCLUSIONS: Our results suggest that Cdp should be recognized as a colistin resistance determinant that confers collective resistance at the microbial community level. Our study will provide vital information for successful clinical outcomes during the treatment of complex polymicrobial infections, particularly including S. maltophilia and other colistin-susceptible Gram-negative pathogens such as P. aeruginosa. Video abstract.


Assuntos
Coinfecção , Farmacorresistência Bacteriana Múltipla , Infecções por Bactérias Gram-Negativas , Microbiota , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Coinfecção/microbiologia , Colistina/farmacologia , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/uso terapêutico , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Stenotrophomonas maltophilia/enzimologia
16.
Microbiol Spectr ; 10(4): e0097622, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35867391

RESUMO

Respiratory infections with bacterial pathogens remain the major cause of morbidity in individuals with the genetic disease cystic fibrosis (CF). Some studies have shown that CF patients that harbor both Staphylococcus aureus and Pseudomonas aeruginosa in their lungs are at even greater risk for more severe and complicated respiratory infections and earlier death. However, the drivers for this worse clinical condition are not well understood. To investigate the interactions between these two microbes that might be responsible for their increased pathogenic potential, we obtained 28 pairs of S. aureus and P. aeruginosa from the same respiratory samples from 18 individuals with CF. We compared the survival of each S. aureus CF isolate cocultured with its corresponding coinfecting CF P. aeruginosa to when it was cocultured with non-CF laboratory strains of P. aeruginosa. We found that the S. aureus survival was significantly higher in the presence of the coinfecting P. aeruginosa compared to laboratory P. aeruginosa strains, regardless of whether the coinfecting isolate was mucoid or nonmucoid. We also tested how a non-CF S. aureus strain, JE2, behaved with each P. aeruginosa CF isolate and found that its interaction was similar to how the CF S. aureus isolate interacted with its coinfecting P. aeruginosa. Altogether, our work suggests that interactions between S. aureus and P. aeruginosa that promote coexistence in the CF lung are isolate-dependent and that this interaction appears to be driven mainly by P. aeruginosa. IMPORTANCE Previous studies have shown that in laboratory settings, Pseudomonas aeruginosa generally kills Staphylococcus aureus. However, these bacteria are often found coinfecting the lungs of cystic fibrosis (CF) patients, which has been associated with worse patient outcomes. To investigate the interactions between these two bacteria, we competed 28 coinfection pairs obtained from the same lung samples of 18 different CF patients. We compared these results to those we previously reported of each CF S. aureus isolate against a non-CF laboratory strain of P. aeruginosa. We found that S. aureus survival against its corresponding coinfection P. aeruginosa was higher than its survival against the laboratory strain of P. aeruginosa. These results suggest that there may be selection for coexistence of these microbes in the CF lung environment. Further understanding of the interactions between P. aeruginosa and S. aureus will provide insights into the drivers of coexistence and their impact on the host.


Assuntos
Coinfecção , Fibrose Cística , Infecções por Pseudomonas , Infecções Respiratórias , Infecções Estafilocócicas , Técnicas de Cocultura , Coinfecção/microbiologia , Fibrose Cística/complicações , Fibrose Cística/microbiologia , Humanos , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Infecções Respiratórias/complicações , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética
17.
PLoS One ; 17(7): e0271912, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35877653

RESUMO

Haemophilus influenzae, Streptococcus pneumoniae and Moraxella catarrhalis are bacterial species which frequently co-colonise the nasopharynx, but can also transit to the middle ear to cause otitis media. Chronic otitis media is often associated with a polymicrobial infection by these bacteria. However, despite being present in polymicrobial infections, the molecular interactions between these bacterial species remain poorly understood. We have previously reported competitive interactions driven by pH and growth phase between H. influenzae and S. pneumoniae. In this study, we have revealed competitive interactions between the three otopathogens, which resulted in reduction of H. influenzae viability in co-culture with S. pneumoniae and in triple-species culture. Transcriptomic analysis by mRNA sequencing identified a central role of arginine in mediating these interactions. Arginine supplementation was able to increase H. influenzae survival in a dual-species environment with S. pneumoniae, and in a triple-species environment. Arginine was used by H. influenzae for ATP production, and levels of ATP generated in dual- and triple-species co-culture at early stages of growth were significantly higher than the combined ATP levels of single-species cultures. These results indicate a central role for arginine-mediated ATP production by H. influenzae in the polymicrobial community.


Assuntos
Coinfecção , Otite Média , Trifosfato de Adenosina , Arginina , Coinfecção/microbiologia , Haemophilus influenzae/genética , Humanos , Moraxella catarrhalis/genética , Otite Média/microbiologia , Streptococcus pneumoniae/genética
18.
Cell Host Microbe ; 30(7): 1020-1033.e6, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35568028

RESUMO

Antibiotics are a modifiable iatrogenic risk factor for the most common human nosocomial fungal infection, invasive candidiasis, yet the underlying mechanisms remain elusive. We found that antibiotics enhanced the susceptibility to murine invasive candidiasis due to impaired lymphocyte-dependent IL-17A- and GM-CSF-mediated antifungal immunity within the gut. This led to non-inflammatory bacterial escape and systemic bacterial co-infection, which could be ameliorated by IL-17A or GM-CSF immunotherapy. Vancomycin alone similarly enhanced the susceptibility to invasive fungal infection and systemic bacterial co-infection. Mechanistically, vancomycin reduced the frequency of gut Th17 cells associated with impaired proliferation and RORγt expression. Vancomycin's effects on Th17 cells were indirect, manifesting only in vivo in the presence of dysbiosis. In humans, antibiotics were associated with an increased risk of invasive candidiasis and death after invasive candidiasis. Our work highlights the importance of antibiotic stewardship in protecting vulnerable patients from life-threatening infections and provides mechanistic insights into a controllable iatrogenic risk factor for invasive candidiasis.


Assuntos
Antibacterianos , Candidíase Invasiva , Coinfecção , Animais , Antibacterianos/administração & dosagem , Antibacterianos/efeitos adversos , Bactérias/efeitos dos fármacos , Bactérias/imunologia , Candida albicans/imunologia , Candidíase Invasiva/imunologia , Candidíase Invasiva/microbiologia , Coinfecção/imunologia , Coinfecção/microbiologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/uso terapêutico , Humanos , Doença Iatrogênica , Imunoterapia , Interleucina-17/imunologia , Interleucina-17/uso terapêutico , Camundongos , Células Th17/metabolismo , Vancomicina/farmacologia
19.
Microbiol Spectr ; 10(3): e0172421, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35467372

RESUMO

Individuals co-infected with HIV and Mycobacterium tuberculosis (Mtb) are more likely to develop severe tuberculosis (TB) disease than HIV-naive individuals. To understand how a chronic pre-existing Simian immunodeficiency virus (SIV) infection impairs the early immune response to Mtb, we used the Mauritian cynomolgus macaque (MCM) model of SIV/Mtb co-infection. We examined the relationship between peripheral viral control and Mtb burden, Mtb dissemination, and T cell function between SIV+ spontaneous controllers, SIV+ non-controllers, and SIV-naive MCM who were challenged with a barcoded Mtb Erdman strain 6 months post-SIV infection and necropsied 6 weeks post-Mtb infection. Mycobacterial burden was highest in the SIV+ non-controllers in all assessed tissues. In lung granulomas, the frequency of TNF-α-producing CD4+ T cells was reduced in all SIV+ MCM, but IFNγ-producing CD4+ T cells were only lower in the SIV+ non-controllers. Further, while all SIV+ MCM had more PD1+ and TIGIT+ T cells in the lung granulomas relative to SIV-naive MCM, SIV+ controllers exhibited the highest frequency of cells expressing these markers. To measure the effect of SIV infection on within-host bacterial dissemination, we sequenced the molecular barcodes of Mtb present in each tissue and characterized the Mtb population complexity. While Mtb population complexity was not associated with SIV infection group, lymph nodes had increased complexity when compared with lung granulomas across all groups. These results provide evidence that SIV+ animals, independent of viral control, exhibit a dysregulated T cell immune response and enhanced dissemination of Mtb, likely contributing to the poor TB disease course across all SIV/Mtb co-infected animals. IMPORTANCE HIV and TB remain significant global health issues, despite the availability of treatments. Individuals with HIV, including those who are virally suppressed, are at an increased risk to develop and succumb to severe TB disease when compared with HIV-naive individuals. Our study aims to understand the relationship between the extent of SIV replication, mycobacterial growth, and T cell function in the tissues of co-infected Mauritian cynomolgus macaques during the first 6 weeks of Mtb infection. Here we demonstrate that increased viral replication is associated with increased bacterial burden in the tissues and impaired T cell responses, and that the immunological damage attributed to virus infection is not fully eliminated when animals spontaneously control virus replication.


Assuntos
Coinfecção , Infecções por HIV , Mycobacterium tuberculosis , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Tuberculose , Animais , Linfócitos T CD4-Positivos , Coinfecção/microbiologia , Granuloma , Infecções por HIV/complicações , Macaca fascicularis , Síndrome de Imunodeficiência Adquirida dos Símios/complicações , Linfócitos T
20.
Viruses ; 14(1)2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35062353

RESUMO

A hypovirulent SZ-2-3y strain isolated from diseased Paris polyphylla was identified as Botrytis cinerea. Interestingly, SZ-2-3y was coinfected with a mitovirus, two botouliviruses, and a 3074 nt fusarivirus, designated Botrytis cinerea fusarivirus 8 (BcFV8); it shares an 87.2% sequence identity with the previously identified Botrytis cinerea fusarivirus 6 (BcFV6). The full-length 2945 nt genome sequence of the mitovirus, termed Botrytis cinerea mitovirus 10 (BcMV10), shares a 54% sequence identity with Fusarium boothii mitovirus 1 (FbMV1), and clusters with fungus mitoviruses, plant mitoviruses and plant mitochondria; hence BcMV10 is a new Mitoviridae member. The full-length 2759 nt and 2812 nt genome sequences of the other two botouliviruses, named Botrytis cinerea botoulivirus 18 and 19 (BcBoV18 and 19), share a 40% amino acid sequence identity with RNA-dependent RNA polymerase protein (RdRp), and these are new members of the Botoulivirus genus of Botourmiaviridae. Horizontal transmission analysis showed that BcBoV18, BcBoV19 and BcFV8 are not related to hypovirulence, suggesting that BcMV10 may induce hypovirulence. Intriguingly, a partial BcMV10 sequence was detected in cucumber plants inoculated with SZ-2-3y mycelium or pXT1/BcMV10 agrobacterium. In conclusion, we identified a hypovirulent SZ-2-3y fungal strain from P. polyphylla, coinfected with four novel mycoviruses that could serve as potential biocontrol agents. Our findings provide evidence of cross-kingdom mycoviral sequence transmission.


Assuntos
Botrytis/virologia , Micovírus/classificação , Micovírus/isolamento & purificação , Liliaceae/microbiologia , Botrytis/isolamento & purificação , Coinfecção/microbiologia , Coinfecção/virologia , Micovírus/genética , Fusarium/virologia , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Liliaceae/genética , Doenças das Plantas/virologia , Vírus de RNA/classificação , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , RNA Viral/genética , RNA Polimerase Dependente de RNA , Análise de Sequência de RNA , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA